Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accurately approximating extreme value statistics (2006.13677v3)

Published 24 Jun 2020 in cond-mat.stat-mech, math-ph, math.MP, and physics.data-an

Abstract: We consider the extreme value statistics of $N$ independent and identically distributed random variables, which is a classic problem in probability theory. When $N\to\infty$, fluctuations around the maximum of the variables are described by the Fisher-Tippett-Gnedenko theorem, which states that the distribution of maxima converges to one out of three limiting forms. Among these is the Gumbel distribution, for which the convergence rate with $N$ is of a logarithmic nature. Here, we present a theory that allows one to use the Gumbel limit to accurately approximate the exact extreme value distribution. We do so by representing the scale and width parameters as power series, and by a transformation of the underlying distribution. We consider functional corrections to the Gumbel limit as well, showing they are obtainable via Taylor expansion. Our method also improves the description of large deviations from the mean extreme value. Additionally, it helps to characterize the extreme value statistics when the underlying distribution is unknown, for example when fitting experimental data.

Summary

We haven't generated a summary for this paper yet.