Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Limitation of the PAC-Bayes Framework (2006.13508v3)

Published 24 Jun 2020 in cs.LG and stat.ML

Abstract: PAC-Bayes is a useful framework for deriving generalization bounds which was introduced by McAllester ('98). This framework has the flexibility of deriving distribution- and algorithm-dependent bounds, which are often tighter than VC-related uniform convergence bounds. In this manuscript we present a limitation for the PAC-Bayes framework. We demonstrate an easy learning task that is not amenable to a PAC-Bayes analysis. Specifically, we consider the task of linear classification in 1D; it is well-known that this task is learnable using just $O(\log(1/\delta)/\epsilon)$ examples. On the other hand, we show that this fact can not be proved using a PAC-Bayes analysis: for any algorithm that learns 1-dimensional linear classifiers there exists a (realizable) distribution for which the PAC-Bayes bound is arbitrarily large.

Citations (23)

Summary

We haven't generated a summary for this paper yet.