Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Provably and Efficiently Approximating Near-cliques using the Turán Shadow: PEANUTS (2006.13483v1)

Published 24 Jun 2020 in cs.SI and cs.DS

Abstract: Clique and near-clique counts are important graph properties with applications in graph generation, graph modeling, graph analytics, community detection among others. They are the archetypal examples of dense subgraphs. While there are several different definitions of near-cliques, most of them share the attribute that they are cliques that are missing a small number of edges. Clique counting is itself considered a challenging problem. Counting near-cliques is significantly harder more so since the search space for near-cliques is orders of magnitude larger than that of cliques. We give a formulation of a near-clique as a clique that is missing a constant number of edges. We exploit the fact that a near-clique contains a smaller clique, and use techniques for clique sampling to count near-cliques. This method allows us to count near-cliques with 1 or 2 missing edges, in graphs with tens of millions of edges. To the best of our knowledge, there was no known efficient method for this problem, and we obtain a 10x - 100x speedup over existing algorithms for counting near-cliques. Our main technique is a space-efficient adaptation of the Tur\'an Shadow sampling approach, recently introduced by Jain and Seshadhri (WWW 2017). This approach constructs a large recursion tree (called the Tur\'an Shadow) that represents cliques in a graph. We design a novel algorithm that builds an estimator for near-cliques, using an online, compact construction of the Tur\'an Shadow.

Citations (18)

Summary

We haven't generated a summary for this paper yet.