Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supervised Understanding of Word Embeddings (2006.13299v1)

Published 23 Jun 2020 in cs.CL and cs.LG

Abstract: Pre-trained word embeddings are widely used for transfer learning in natural language processing. The embeddings are continuous and distributed representations of the words that preserve their similarities in compact Euclidean spaces. However, the dimensions of these spaces do not provide any clear interpretation. In this study, we have obtained supervised projections in the form of the linear keyword-level classifiers on word embeddings. We have shown that the method creates interpretable projections of original embedding dimensions. Activations of the trained classifier nodes correspond to a subset of the words in the vocabulary. Thus, they behave similarly to the dictionary features while having the merit of continuous value output. Additionally, such dictionaries can be grown iteratively with multiple rounds by adding expert labels on top-scoring words to an initial collection of the keywords. Also, the same classifiers can be applied to aligned word embeddings in other languages to obtain corresponding dictionaries. In our experiments, we have shown that initializing higher-order networks with these classifier weights gives more accurate models for downstream NLP tasks. We further demonstrate the usefulness of supervised dimensions in revealing the polysemous nature of a keyword of interest by projecting it's embedding using learned classifiers in different sub-spaces.

Summary

We haven't generated a summary for this paper yet.