Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability and bifurcation phenomena in asymptotically Hamiltonian systems (2006.12957v1)

Published 23 Jun 2020 in math.DS

Abstract: The influence of time-dependent perturbations on an autonomous Hamiltonian system with an equilibrium of center type is considered. It is assumed that the perturbations decay at infinity in time and vanish at the equilibrium of the unperturbed system. In this case the stability and the long-term behaviour of trajectories depend on nonlinear and non-autonomous terms of the equations. The paper investigates bifurcations associated with a change of Lyapunov stability of the equilibrium and the emergence of new attracting or repelling states in the perturbed asymptotically autonomous system. The dependence of bifurcations on the structure of decaying perturbations is discussed.

Summary

We haven't generated a summary for this paper yet.