Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An energy landscape approach to locomotor transitions in complex 3D terrain (2006.12717v1)

Published 23 Jun 2020 in physics.bio-ph, cs.SY, eess.SY, and q-bio.QM

Abstract: Effective locomotion in nature happens by transitioning across multiple modes (e.g., walk, run, climb). Despite this, far more mechanistic understanding of terrestrial locomotion has been on how to generate and stabilize around near-steady-state movement in a single mode. We still know little about how locomotor transitions emerge from physical interaction with complex terrain. Consequently, robots largely rely on geometric maps to avoid obstacles, not traverse them. Recent studies revealed that locomotor transitions in complex 3-D terrain occur probabilistically via multiple pathways. Here, we show that an energy landscape approach elucidates the underlying physical principles. We discovered that locomotor transitions of animals and robots self-propelled through complex 3-D terrain correspond to barrier-crossing transitions on a potential energy landscape. Locomotor modes are attracted to landscape basins separated by potential energy barriers. Kinetic energy fluctuation from oscillatory self-propulsion helps the system stochastically escape from one basin and reach another to make transitions. Escape is more likely towards lower barrier direction. These principles are surprisingly similar to those of near-equilibrium, microscopic systems. Analogous to free energy landscapes for multi-pathway protein folding transitions, our energy landscape approach from first principles is the beginning of a statistical physics theory of multi-pathway locomotor transitions in complex terrain. This will not only help understand how the organization of animal behavior emerges from multi-scale interactions between their neural and mechanical systems and the physical environment, but also guide robot design, control, and planning over the large, intractable locomotor-terrain parameter space to generate robust locomotor transitions through the real world.

Citations (33)

Summary

We haven't generated a summary for this paper yet.