Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Siamese Meta-Learning and Algorithm Selection with 'Algorithm-Performance Personas' [Proposal] (2006.12328v2)

Published 22 Jun 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Automated per-instance algorithm selection often outperforms single learners. Key to algorithm selection via meta-learning is often the (meta) features, which sometimes though do not provide enough information to train a meta-learner effectively. We propose a Siamese Neural Network architecture for automated algorithm selection that focuses more on 'alike performing' instances than meta-features. Our work includes a novel performance metric and method for selecting training samples. We introduce further the concept of 'Algorithm Performance Personas' that describe instances for which the single algorithms perform alike. The concept of 'alike performing algorithms' as ground truth for selecting training samples is novel and provides a huge potential as we believe. In this proposal, we outline our ideas in detail and provide the first evidence that our proposed metric is better suitable for training sample selection that standard performance metrics such as absolute errors.

Citations (4)

Summary

We haven't generated a summary for this paper yet.