Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient text generation of user-defined topic using generative adversarial networks (2006.12005v1)

Published 22 Jun 2020 in cs.CL

Abstract: This study focused on efficient text generation using generative adversarial networks (GAN). Assuming that the goal is to generate a paragraph of a user-defined topic and sentimental tendency, conventionally the whole network has to be re-trained to obtain new results each time when a user changes the topic. This would be time-consuming and impractical. Therefore, we propose a User-Defined GAN (UD-GAN) with two-level discriminators to solve this problem. The first discriminator aims to guide the generator to learn paragraph-level information and sentence syntactic structure, which is constructed by multiple-LSTMs. The second one copes with higher-level information, such as the user-defined sentiment and topic for text generation. The cosine similarity based on TF-IDF and length penalty are adopted to determine the relevance of the topic. Then, the second discriminator is re-trained with the generator if the topic or sentiment for text generation is modified. The system evaluations are conducted to compare the performance of the proposed method with other GAN-based ones. The objective results showed that the proposed method is capable of generating texts with less time than others and the generated text is related to the user-defined topic and sentiment. We will further investigate the possibility of incorporating more detailed paragraph information such as semantics into text generation to enhance the result.

Citations (1)

Summary

We haven't generated a summary for this paper yet.