Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fully Automated 3D Segmentation of MR-Imaged Calf Muscle Compartments: Neighborhood Relationship Enhanced Fully Convolutional Network (2006.11930v2)

Published 21 Jun 2020 in eess.IV and cs.CV

Abstract: Automated segmentation of individual calf muscle compartments from 3D magnetic resonance (MR) images is essential for developing quantitative biomarkers for muscular disease progression and its prediction. Achieving clinically acceptable results is a challenging task due to large variations in muscle shape and MR appearance. Although deep convolutional neural networks (DCNNs) achieved improved accuracy in various image segmentation tasks, certain problems such as utilizing long-range information and incorporating high-level constraints remain unsolved. We present a novel fully convolutional network (FCN), called FilterNet, that utilizes contextual information in a large neighborhood and embeds edge-aware constraints for individual calf muscle compartment segmentations. An encoder-decoder architecture with flexible backbone blocks is used to systematically enlarge convolution receptive field and preserve information at all resolutions. Edge positions derived from the FCN output muscle probability maps are explicitly regularized using kernel-based edge detection in an end-to-end optimization framework. Our FilterNet was evaluated on 40 T1-weighted MR images of 10 healthy and 30 diseased subjects by 4-fold cross-validation. Mean DICE coefficients of 88.00%--91.29% and mean absolute surface positioning errors of 1.04--1.66 mm were achieved for the five 3D muscle compartments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.