Papers
Topics
Authors
Recent
Search
2000 character limit reached

Breaking the Curse of Many Agents: Provable Mean Embedding Q-Iteration for Mean-Field Reinforcement Learning

Published 21 Jun 2020 in cs.LG and stat.ML | (2006.11917v1)

Abstract: Multi-agent reinforcement learning (MARL) achieves significant empirical successes. However, MARL suffers from the curse of many agents. In this paper, we exploit the symmetry of agents in MARL. In the most generic form, we study a mean-field MARL problem. Such a mean-field MARL is defined on mean-field states, which are distributions that are supported on continuous space. Based on the mean embedding of the distributions, we propose MF-FQI algorithm that solves the mean-field MARL and establishes a non-asymptotic analysis for MF-FQI algorithm. We highlight that MF-FQI algorithm enjoys a "blessing of many agents" property in the sense that a larger number of observed agents improves the performance of MF-FQI algorithm.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.