Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Genus fields of Kummer $\ell^n$-cyclic extensions (2006.11870v1)

Published 21 Jun 2020 in math.NT

Abstract: We give a construction of the genus field for Kummer $\elln$-cyclic extensions of rational congruence function fields, where $\ell$ is a prime number. First, we compute the genus field of a field contained in a cyclotomic function field, and then for the general case. This generalizes the result obtained by Peng for a Kummer $\ell$-cyclic extension. Finally, we study the extension $(K_1K_2){\frak{ge}}/(K_1){\frak{ge}}(K_2)_{\frak{ge}}$, for $K_1$, $K_2$ abelian extensions of $k$.

Summary

We haven't generated a summary for this paper yet.