Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Langevin Dynamics for Adaptive Inverse Reinforcement Learning of Stochastic Gradient Algorithms (2006.11674v2)

Published 20 Jun 2020 in cs.LG, cs.SY, eess.SY, and stat.ML

Abstract: Inverse reinforcement learning (IRL) aims to estimate the reward function of optimizing agents by observing their response (estimates or actions). This paper considers IRL when noisy estimates of the gradient of a reward function generated by multiple stochastic gradient agents are observed. We present a generalized Langevin dynamics algorithm to estimate the reward function $R(\theta)$; specifically, the resulting Langevin algorithm asymptotically generates samples from the distribution proportional to $\exp(R(\theta))$. The proposed IRL algorithms use kernel-based passive learning schemes. We also construct multi-kernel passive Langevin algorithms for IRL which are suitable for high dimensional data. The performance of the proposed IRL algorithms are illustrated on examples in adaptive Bayesian learning, logistic regression (high dimensional problem) and constrained Markov decision processes. We prove weak convergence of the proposed IRL algorithms using martingale averaging methods. We also analyze the tracking performance of the IRL algorithms in non-stationary environments where the utility function $R(\theta)$ jump changes over time as a slow Markov chain.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Vikram Krishnamurthy (114 papers)
  2. George Yin (58 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.