Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collective Learning by Ensembles of Altruistic Diversifying Neural Networks (2006.11671v1)

Published 20 Jun 2020 in cs.LG, cs.MA, cs.NE, and stat.ML

Abstract: Combining the predictions of collections of neural networks often outperforms the best single network. Such ensembles are typically trained independently, and their superior wisdom of the crowd' originates from the differences between networks. Collective foraging and decision making in socially interacting animal groups is often improved or even optimal thanks to local information sharing between conspecifics. We therefore present a model for co-learning by ensembles of interacting neural networks that aim to maximize their own performance but also their functional relations to other networks. We show that ensembles of interacting networks outperform independent ones, and that optimal ensemble performance is reached when the coupling between networks increases diversity and degrades the performance of individual networks. Thus, even without a global goal for the ensemble, optimal collective behavior emerges from local interactions between networks. We show the scaling of optimal coupling strength with ensemble size, and that networks in these ensembles specialize functionally and become moreconfident' in their assessments. Moreover, optimal co-learning networks differ structurally, relying on sparser activity, a wider range of synaptic weights, and higher firing rates - compared to independently trained networks. Finally, we explore interactions-based co-learning as a framework for expanding and boosting ensembles.

Citations (4)

Summary

We haven't generated a summary for this paper yet.