Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hypocoercivity of Langevin-type dynamics on abstract smooth manifolds (2006.11567v1)

Published 20 Jun 2020 in math.PR and math.FA

Abstract: In this article we investigate hypocoercivity of Langevin-type dynamics in nonlinear smooth geometries. The main result stating exponential decay to an equilibrium state with explicitly computable rate of convergence is rooted in an appealing Hilbert space strategy by Dolbeault, Mouhot and Schmeiser. This strategy was extended in [GS14] to Kolmogorov backward evolution equations in contrast to the dual Fokker-Planck framework. We use this mathematically complete elaboration to investigate wide ranging classes of Langevin-type SDEs in an abstract manifold setting, i.e. (at least) the position variables obey certain smooth side conditions. Such equations occur e.g. as fibre lay-down processes in industrial applications. We contribute the Lagrangian-type formulation of such geometric Langevin dynamics in terms of (semi-)sprays and point to the necessity of fibre bundle measure spaces to specify the model Hilbert space.

Summary

We haven't generated a summary for this paper yet.