Papers
Topics
Authors
Recent
2000 character limit reached

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs

Published 20 Jun 2020 in cs.LG and stat.ML | (2006.11468v2)

Abstract: We investigate the representation power of graph neural networks in the semi-supervised node classification task under heterophily or low homophily, i.e., in networks where connected nodes may have different class labels and dissimilar features. Many popular GNNs fail to generalize to this setting, and are even outperformed by models that ignore the graph structure (e.g., multilayer perceptrons). Motivated by this limitation, we identify a set of key designs -- ego- and neighbor-embedding separation, higher-order neighborhoods, and combination of intermediate representations -- that boost learning from the graph structure under heterophily. We combine them into a graph neural network, H2GCN, which we use as the base method to empirically evaluate the effectiveness of the identified designs. Going beyond the traditional benchmarks with strong homophily, our empirical analysis shows that the identified designs increase the accuracy of GNNs by up to 40% and 27% over models without them on synthetic and real networks with heterophily, respectively, and yield competitive performance under homophily.

Citations (33)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.