Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 225 tok/s Pro
2000 character limit reached

DEED: A General Quantization Scheme for Communication Efficiency in Bits (2006.11401v1)

Published 19 Jun 2020 in math.OC and cs.LG

Abstract: In distributed optimization, a popular technique to reduce communication is quantization. In this paper, we provide a general analysis framework for inexact gradient descent that is applicable to quantization schemes. We also propose a quantization scheme Double Encoding and Error Diminishing (DEED). DEED can achieve small communication complexity in three settings: frequent-communication large-memory, frequent-communication small-memory, and infrequent-communication (e.g. federated learning). More specifically, in the frequent-communication large-memory setting, DEED can be easily combined with Nesterov's method, so that the total number of bits required is $\tilde{O}( \sqrt{\kappa} \log 1/\epsilon )$, where $\tilde{O}$ hides numerical constant and $\log \kappa$ factors. In the frequent-communication small-memory setting, DEED combined with SGD only requires $\tilde{O}( \kappa \log 1/\epsilon)$ number of bits in the interpolation regime. In the infrequent communication setting, DEED combined with Federated averaging requires a smaller total number of bits than Federated Averaging. All these algorithms converge at the same rate as their non-quantized versions, while using a smaller number of bits.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.