Papers
Topics
Authors
Recent
Search
2000 character limit reached

$λ$-Regularized A-Optimal Design and its Approximation by $λ$-Regularized Proportional Volume Sampling

Published 19 Jun 2020 in cs.DS, cs.LG, math.OC, stat.CO, and stat.ML | (2006.11182v1)

Abstract: In this work, we study the $\lambda$-regularized $A$-optimal design problem and introduce the $\lambda$-regularized proportional volume sampling algorithm, generalized from [Nikolov, Singh, and Tantipongpipat, 2019], for this problem with the approximation guarantee that extends upon the previous work. In this problem, we are given vectors $v_1,\ldots,v_n\in\mathbb{R}d$ in $d$ dimensions, a budget $k\leq n$, and the regularizer parameter $\lambda\geq0$, and the goal is to find a subset $S\subseteq [n]$ of size $k$ that minimizes the trace of $\left(\sum_{i\in S}v_iv_i\top + \lambda I_d\right){-1}$ where $I_d$ is the $d\times d$ identity matrix. The problem is motivated from optimal design in ridge regression, where one tries to minimize the expected squared error of the ridge regression predictor from the true coefficient in the underlying linear model. We introduce $\lambda$-regularized proportional volume sampling and give its polynomial-time implementation to solve this problem. We show its $(1+\frac{\epsilon}{\sqrt{1+\lambda'}})$-approximation for $k=\Omega\left(\frac d\epsilon+\frac{\log 1/\epsilon}{\epsilon2}\right)$ where $\lambda'$ is proportional to $\lambda$, extending the previous bound in [Nikolov, Singh, and Tantipongpipat, 2019] to the case $\lambda>0$ and obtaining asymptotic optimality as $\lambda\rightarrow \infty$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.