Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entropy and relative entropy from information-theoretic principles (2006.11164v2)

Published 19 Jun 2020 in cs.IT, math.IT, and quant-ph

Abstract: We introduce an axiomatic approach to entropies and relative entropies that relies only on minimal information-theoretic axioms, namely monotonicity under mixing and data-processing as well as additivity for product distributions. We find that these axioms induce sufficient structure to establish continuity in the interior of the probability simplex and meaningful upper and lower bounds, e.g., we find that every relative entropy must lie between the R\'enyi divergences of order $0$ and $\infty$. We further show simple conditions for positive definiteness of such relative entropies and a characterisation in term of a variant of relative trumping. Our main result is a one-to-one correspondence between entropies and relative entropies.

Citations (17)

Summary

We haven't generated a summary for this paper yet.