Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating the Most Probable Transition Time for Stochastic Dynamical Systems (2006.10979v1)

Published 19 Jun 2020 in math-ph and math.MP

Abstract: This work is devoted to the investigation of the most probable transition time between metastable states for stochastic dynamical systems. Such a system is modeled by a stochastic differential equation with non-vanishing Brownian noise, and is restricted in a domain with absorbing boundary. Instead of minimizing the Onsager-Machlup action functional, we examine the maximum probability that the solution process of the system stays in a neighborhood (or a tube) of a transition path, in order to characterize the most probable transition path. We first establish the exponential decay lower bound and a power law decay upper bound for the maximum of this probability. Based on these estimates, we further derive the lower and upper bounds for the most probable transition time, under suitable conditions. Finally, we illustrate our results in simple stochastic dynamical systems, and highlight the relation with some relevant works.

Summary

We haven't generated a summary for this paper yet.