Papers
Topics
Authors
Recent
2000 character limit reached

Stochastic Network Utility Maximization with Unknown Utilities: Multi-Armed Bandits Approach

Published 17 Jun 2020 in cs.LG, cs.NI, and stat.ML | (2006.09997v1)

Abstract: In this paper, we study a novel Stochastic Network Utility Maximization (NUM) problem where the utilities of agents are unknown. The utility of each agent depends on the amount of resource it receives from a network operator/controller. The operator desires to do a resource allocation that maximizes the expected total utility of the network. We consider threshold type utility functions where each agent gets non-zero utility if the amount of resource it receives is higher than a certain threshold. Otherwise, its utility is zero (hard real-time). We pose this NUM setup with unknown utilities as a regret minimization problem. Our goal is to identify a policy that performs as `good' as an oracle policy that knows the utilities of agents. We model this problem setting as a bandit setting where feedback obtained in each round depends on the resource allocated to the agents. We propose algorithms for this novel setting using ideas from Multiple-Play Multi-Armed Bandits and Combinatorial Semi-Bandits. We show that the proposed algorithm is optimal when all agents have the same utility. We validate the performance guarantees of our proposed algorithms through numerical experiments.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.