Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine learning driven simulated deposition of carbon films: from low-density to diamondlike amorphous carbon (2006.09760v2)

Published 17 Jun 2020 in cond-mat.mtrl-sci

Abstract: Amorphous carbon (a-C) materials have diverse interesting and useful properties, but the understanding of their atomic-scale structures is still incomplete. Here, we report on extensive atomistic simulations of the deposition and growth of a-C films, describing interatomic interactions using a ML based Gaussian Approximation Potential (GAP) model. We expand widely on our initial work [Phys. Rev. Lett. 120, 166101 (2018)] by now considering a broad range of incident ion energies, thus modeling samples that span the entire range from low-density ($sp{2}$-rich) to high-density ($sp{3}$-rich, "diamond-like") amorphous forms of carbon. Two different mechanisms are observed in these simulations, depending on the impact energy: low-energy impacts induce $sp$- and $sp{2}$-dominated growth directly around the impact site, whereas high-energy impacts induce peening. Furthermore, we propose and apply a scheme for computing the anisotropic elastic properties of the a-C films. Our work provides fundamental insight into this intriguing class of disordered solids, as well as a conceptual and methodological blueprint for simulating the atomic-scale deposition of other materials with ML-driven molecular dynamics.

Citations (39)

Summary

We haven't generated a summary for this paper yet.