Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Defense by Latent Style Transformations (2006.09701v2)

Published 17 Jun 2020 in cs.CV and cs.LG

Abstract: Machine learning models have demonstrated vulnerability to adversarial attacks, more specifically misclassification of adversarial examples. In this paper, we investigate an attack-agnostic defense against adversarial attacks on high-resolution images by detecting suspicious inputs. The intuition behind our approach is that the essential characteristics of a normal image are generally consistent with non-essential style transformations, e.g., slightly changing the facial expression of human portraits. In contrast, adversarial examples are generally sensitive to such transformations. In our approach to detect adversarial instances, we propose an in\underline{V}ertible \underline{A}utoencoder based on the \underline{S}tyleGAN2 generator via \underline{A}dversarial training (VASA) to inverse images to disentangled latent codes that reveal hierarchical styles. We then build a set of edited copies with non-essential style transformations by performing latent shifting and reconstruction, based on the correspondences between latent codes and style transformations. The classification-based consistency of these edited copies is used to distinguish adversarial instances.

Citations (10)

Summary

We haven't generated a summary for this paper yet.