Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wasserstein Regression (2006.09660v2)

Published 17 Jun 2020 in stat.ME

Abstract: The analysis of samples of random objects that do not lie in a vector space is gaining increasing attention in statistics. An important class of such object data is univariate probability measures defined on the real line. Adopting the Wasserstein metric, we develop a class of regression models for such data, where random distributions serve as predictors and the responses are either also distributions or scalars. To define this regression model, we utilize the geometry of tangent bundles of the space of random measures endowed with the Wasserstein metric for mapping distributions to tangent spaces. The proposed distribution-to-distribution regression model provides an extension of multivariate linear regression for Euclidean data and function-to-function regression for Hilbert space valued data in functional data analysis. In simulations, it performs better than an alternative transformation approach where one maps distributions to a Hilbert space through the log quantile density transformation and then applies traditional functional regression. We derive asymptotic rates of convergence for the estimator of the regression operator and for predicted distributions and also study an extension to autoregressive models for distribution-valued time series. The proposed methods are illustrated with data on human mortality and distributional time series of house prices.

Citations (75)

Summary

We haven't generated a summary for this paper yet.