Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Approximations to Hidden Semi-Markov Models for Telemetric Monitoring of Physical Activity (2006.09061v2)

Published 16 Jun 2020 in stat.ME

Abstract: We propose a Bayesian hidden Markov model for analyzing time series and sequential data where a special structure of the transition probability matrix is embedded to model explicit-duration semi-Markovian dynamics. Our formulation allows for the development of highly flexible and interpretable models that can integrate available prior information on state durations while keeping a moderate computational cost to perform efficient posterior inference. We show the benefits of choosing a Bayesian approach for HSMM estimation over its frequentist counterpart, in terms of model selection and out-of-sample forecasting, also highlighting the computational feasibility of our inference procedure whilst incurring negligible statistical error. The use of our methodology is illustrated in an application relevant to e-Health, where we investigate rest-activity rhythms using telemetric activity data collected via a wearable sensing device. This analysis considers for the first time Bayesian model selection for the form of the explicit state dwell distribution. We further investigate the inclusion of a circadian covariate into the emission density and estimate this in a data-driven manner.

Summary

We haven't generated a summary for this paper yet.