Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A mirror theorem for multi-root stacks and applications (2006.08991v2)

Published 16 Jun 2020 in math.AG

Abstract: Given a smooth projective variety $X$ with a simple normal crossing divisor $D:=D_1+D_2+...+D_n$, where $D_i\subset X$ are smooth, irreducible and nef. We prove a mirror theorem for multi-root stacks $X_{D,\vec r}$ by constructing an $I$-function, a slice of Givental's Lagrangian cone for Gromov--Witten theory of multi-root stacks. We provide three applications: (1) We show that some genus zero invariants of $X_{D,\vec r}$ stabilize for sufficiently large $\vec r$. (2) We state a generalized local-log-orbifold principle conjecture and prove a version of it. (3) We show that regularized quantum periods of Fano varieties coincide with classical periods of the mirror Landau--Ginzburg potentials using orbifold invariants of $X_{D,\vec r}$.

Summary

We haven't generated a summary for this paper yet.