Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Confining the Robber on Cographs (2006.08941v3)

Published 16 Jun 2020 in math.CO and cs.DM

Abstract: In this paper, the notions of {\em trapping} and {\em confining} the robber on a graph are introduced. We present some structural necessary conditions for graphs $G$ not containing the path on $k$ vertices (referred to as $P_k$-free graphs) for some $k\ge 4$, so that $k-3$ cops do not have a strategy to capture or confine the robber on $G$. Utilizing such conditions, we show that for planar cographs and planar $P_5$-free graphs the confining cop number is at most one and two, respectively. It is also shown that the number of vertices of a connected cograph on which one cop does not have a strategy to confine the robber has a tight lower-bound of eight. We also explore the effects of twin operations -- which are well known to provide a characterization of cographs -- on the number of cops required to capture or confine the robber on cographs. We conclude by posing two conjectures concerning the confining cop number of $P_5$-free graphs and the smallest planar graph of confining cop number of three.

Citations (2)

Summary

We haven't generated a summary for this paper yet.