Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RaSE: Random Subspace Ensemble Classification (2006.08855v3)

Published 16 Jun 2020 in stat.ML, cs.LG, math.ST, stat.CO, stat.ME, and stat.TH

Abstract: We propose a flexible ensemble classification framework, Random Subspace Ensemble (RaSE), for sparse classification. In the RaSE algorithm, we aggregate many weak learners, where each weak learner is a base classifier trained in a subspace optimally selected from a collection of random subspaces. To conduct subspace selection, we propose a new criterion, ratio information criterion (RIC), based on weighted Kullback-Leibler divergence. The theoretical analysis includes the risk and Monte-Carlo variance of the RaSE classifier, establishing the screening consistency and weak consistency of RIC, and providing an upper bound for the misclassification rate of the RaSE classifier. In addition, we show that in a high-dimensional framework, the number of random subspaces needs to be very large to guarantee that a subspace covering signals is selected. Therefore, we propose an iterative version of the RaSE algorithm and prove that under some specific conditions, a smaller number of generated random subspaces are needed to find a desirable subspace through iteration. An array of simulations under various models and real-data applications demonstrate the effectiveness and robustness of the RaSE classifier and its iterative version in terms of low misclassification rate and accurate feature ranking. The RaSE algorithm is implemented in the R package RaSEn on CRAN.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ye Tian (191 papers)
  2. Yang Feng (231 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.