Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

hSPICE: State-Aware Event Shedding in Complex Event Processing (2006.08211v2)

Published 15 Jun 2020 in cs.DC

Abstract: In complex event processing (CEP), load shedding is performed to maintain a given latency bound during overload situations when there is a limitation on resources. However, shedding load implies degradation in the quality of results (QoR). Therefore, it is crucial to perform load shedding in a way that has the lowest impact on QoR. Researchers, in the CEP domain, propose to drop either events or partial matches (PMs) in overload cases. They assign utilities to events or PMs by considering either the importance of events or the importance of PMs but not both together. In this paper, we propose a load shedding approach for CEP systems that combines these approaches by assigning a utility to an event by considering both the event importance and the importance of PMs. We adopt a probabilistic model that uses the type and position of an event in a window and the state of a PM to assign a utility to an event corresponding to each PM. We, also, propose an approach to predict a utility threshold that is used to drop the required amount of events to maintain a given latency bound. By extensive evaluations on two real-world datasets and several representative queries, we show that, in the majority of cases, our load shedding approach outperforms state-of-the-art load shedding approaches, w.r.t. QoR.

Citations (13)

Summary

We haven't generated a summary for this paper yet.