Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Iteration-complexity of an inexact proximal accelerated augmented Lagrangian method for solving linearly constrained smooth nonconvex composite optimization problems (2006.08048v1)

Published 14 Jun 2020 in math.OC

Abstract: This paper proposes and establishes the iteration-complexity of an inexact proximal accelerated augmented Lagrangian (IPAAL) method for solving linearly constrained smooth nonconvex composite optimization problems. Each IPAAL iteration consists of inexactly solving a proximal augmented Lagrangian subproblem by an accelerated composite gradient (ACG) method followed by a suitable Lagrange multiplier update. It is shown that IPAAL generates an approximate stationary solution in at most ${\cal O}(\log(1/\rho)/\rho{3})$ ACG iterations, where $\rho>0$ is the given tolerance. It is also shown that the previous complexity bound can be sharpened to ${\cal O}(\log(1/\rho)/\rho{2.5})$ under additional mildly stronger assumptions. The above bounds are derived assuming that the initial point is neither feasible nor the domain of the composite term of the objective function is bounded. Some preliminary numerical results are presented to illustrate the performance of the IPAAL method.

Summary

We haven't generated a summary for this paper yet.