Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wasserstein barycenters can be computed in polynomial time in fixed dimension (2006.08012v2)

Published 14 Jun 2020 in math.OC, cs.CG, cs.DS, and cs.LG

Abstract: Computing Wasserstein barycenters is a fundamental geometric problem with widespread applications in machine learning, statistics, and computer graphics. However, it is unknown whether Wasserstein barycenters can be computed in polynomial time, either exactly or to high precision (i.e., with $\textrm{polylog}(1/\varepsilon)$ runtime dependence). This paper answers these questions in the affirmative for any fixed dimension. Our approach is to solve an exponential-size linear programming formulation by efficiently implementing the corresponding separation oracle using techniques from computational geometry.

Citations (39)

Summary

We haven't generated a summary for this paper yet.