Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Approximate Minimum Entropy Coupling of Multiple Probability Distributions

Published 14 Jun 2020 in cs.IT, math.IT, and math.PR | (2006.07955v2)

Abstract: Given a collection of probability distributions $p_{1},\ldots,p_{m}$, the minimum entropy coupling is the coupling $X_{1},\ldots,X_{m}$ ($X_{i}\sim p_{i}$) with the smallest entropy $H(X_{1},\ldots,X_{m})$. While this problem is known to be NP-hard, we present an efficient algorithm for computing a coupling with entropy within 2 bits from the optimal value. More precisely, we construct a coupling with entropy within 2 bits from the entropy of the greatest lower bound of $p_{1},\ldots,p_{m}$ with respect to majorization. This construction is also valid when the collection of distributions is infinite, and when the supports of the distributions are infinite. Potential applications of our results include random number generation, entropic causal inference, and functional representation of random variables.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.