Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias (2006.07904v2)

Published 14 Jun 2020 in stat.ML, cs.LG, math.OC, math.ST, stat.CO, and stat.TH

Abstract: Structured non-convex learning problems, for which critical points have favorable statistical properties, arise frequently in statistical machine learning. Algorithmic convergence and statistical estimation rates are well-understood for such problems. However, quantifying the uncertainty associated with the underlying training algorithm is not well-studied in the non-convex setting. In order to address this shortcoming, in this work, we establish an asymptotic normality result for the constant step size stochastic gradient descent (SGD) algorithm--a widely used algorithm in practice. Specifically, based on the relationship between SGD and Markov Chains [DDB19], we show that the average of SGD iterates is asymptotically normally distributed around the expected value of their unique invariant distribution, as long as the non-convex and non-smooth objective function satisfies a dissipativity property. We also characterize the bias between this expected value and the critical points of the objective function under various local regularity conditions. Together, the above two results could be leveraged to construct confidence intervals for non-convex problems that are trained using the SGD algorithm.

Citations (44)

Summary

We haven't generated a summary for this paper yet.