Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scarcity of congruences for the partition function (2006.07645v3)

Published 13 Jun 2020 in math.NT

Abstract: The arithmetic properties of the ordinary partition function $p(n)$ have been the topic of intensive study for the past century. Ramanujan proved that there are linear congruences of the form $p(\ell n+\beta)\equiv 0\pmod\ell$ for the primes $\ell=5, 7, 11$, and it is known that there are no others of this form. On the other hand, for every prime $\ell\geq 5$ there are infinitely many examples of congruences of the form $p(\ell Qm n+\beta)\equiv 0\pmod\ell$ where $Q\geq 5$ is prime and $m\geq 3$. This leaves open the question of the existence of such congruences when $m=1$ or $m=2$ (no examples in these cases are known). We prove in a precise sense that such congruences, if they exist, are exceedingly scarce. Our methods involve a careful study of modular forms of half integral weight on the full modular group which are related to the partition function. Among many other tools, we use work of Radu which describes expansions of such modular forms along square classes at cusps of the modular curve $X(\ell Q)$, Galois representations and the arithmetic large sieve.

Citations (10)

Summary

We haven't generated a summary for this paper yet.