Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lattice Equable Quadrilaterals I -- Parallelograms (2006.07566v2)

Published 13 Jun 2020 in math.NT

Abstract: This paper studies equable parallelograms whose vertices lie on the integer lattice. Using Rosenberger's Theorem on generalised Markov equations, we show that the g.c.d. of the side lengths of such parallelograms can only be 3, 4 or 5, and in each of these cases the set of parallelograms naturally forms an infinite tree all of whose vertices have degree 4, bar the root. The paper then focuses on what we call Pythagorean equable parallelograms. These are lattice equable parallelograms whose complement in a circumscribing rectangle consists of two Pythagorean triangles. We prove that for these parallelograms the shortest side can only be 3, 4, 5, 6 or 10, and there are five infinite families of such parallelograms, given by solutions to corresponding Pell-like equations.

Summary

We haven't generated a summary for this paper yet.