Papers
Topics
Authors
Recent
2000 character limit reached

Jointly Optimizing Dataset Size and Local Updates in Heterogeneous Mobile Edge Learning

Published 12 Jun 2020 in eess.SP, cs.DC, and cs.LG | (2006.07402v3)

Abstract: This paper proposes to maximize the accuracy of a distributed ML model trained on learners connected via the resource-constrained wireless edge. We jointly optimize the number of local/global updates and the task size allocation to minimize the loss while taking into account heterogeneous communication and computation capabilities of each learner. By leveraging existing bounds on the difference between the training loss at any given iteration and the theoretically optimal loss, we derive an expression for the objective function in terms of the number of local updates. The resulting convex program is solved to obtain the optimal number of local updates which is used to obtain the total updates and batch sizes for each learner. The merits of the proposed solution, which is heterogeneity aware (HA), are exhibited by comparing its performance to the heterogeneity unaware (HU) approach.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.