Jointly Optimizing Dataset Size and Local Updates in Heterogeneous Mobile Edge Learning
Abstract: This paper proposes to maximize the accuracy of a distributed ML model trained on learners connected via the resource-constrained wireless edge. We jointly optimize the number of local/global updates and the task size allocation to minimize the loss while taking into account heterogeneous communication and computation capabilities of each learner. By leveraging existing bounds on the difference between the training loss at any given iteration and the theoretically optimal loss, we derive an expression for the objective function in terms of the number of local updates. The resulting convex program is solved to obtain the optimal number of local updates which is used to obtain the total updates and batch sizes for each learner. The merits of the proposed solution, which is heterogeneity aware (HA), are exhibited by comparing its performance to the heterogeneity unaware (HU) approach.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.