Papers
Topics
Authors
Recent
Search
2000 character limit reached

D-square-B: Deep Distribution Bound for Natural-looking Adversarial Attack

Published 12 Jun 2020 in cs.LG and stat.ML | (2006.07258v2)

Abstract: We propose a novel technique that can generate natural-looking adversarial examples by bounding the variations induced for internal activation values in some deep layer(s), through a distribution quantile bound and a polynomial barrier loss function. By bounding model internals instead of individual pixels, our attack admits perturbations closely coupled with the existing features of the original input, allowing the generated examples to be natural-looking while having diverse and often substantial pixel distances from the original input. Enforcing per-neuron distribution quantile bounds allows addressing the non-uniformity of internal activation values. Our evaluation on ImageNet and five different model architecture demonstrates that our attack is quite effective. Compared to the state-of-the-art pixel space attack, semantic attack, and feature space attack, our attack can achieve the same attack success/confidence level while having much more natural-looking adversarial perturbations. These perturbations piggy-back on existing local features and do not have any fixed pixel bounds.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.