Besov spaces associated with non-negative operators on Banach spaces
Abstract: Motivated by a variety of representations of fractional powers of operators, we develop the theory of abstract Besov spaces $B{ s, A }_{ q, X }$ for non-negative operators $A$ on Banach spaces $X$ with a full range of indices $s \in \mathbb{R}$ and $0 < q \leq \infty$. The approach we use is the dyadic decomposition of resolvents for non-negative operators, an analogue of the Littlewood-Paley decomposition in the construction of the classical Besov spaces. In particular, by using the reproducing formulas for fractional powers of operators and explicit quasi-norms estimates for Besov spaces we discuss the connections between the smoothness of Besov spaces associated with operators and the boundedness of fractional powers of the underlying operators.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.