Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sur la répartition jointe de la représentation d'Ostrowski dans les classes de résidue (2006.06960v1)

Published 12 Jun 2020 in math.NT

Abstract: For two distinct integers $m_1,m_2\ge2$, we set $\alpha_1=[0;\overline{1,m_1}]$ and $\alpha_2=[0;\overline{1,m_2}]$ and we denote by $S_{\alpha_1}(n)$ and $S_{\alpha_2}(n)$ respectively the sum of digits functions in the Ostrowski $\alpha_1$ and $\alpha_2-$representations of $n$. Let $b_1,b_2 $ be positive integers satisfying $(b_1,m_1)=1$ and $(b_2,m_2)=1$, we obtain an estimation with an error term $O(N{1-\delta})$ for the cardinal of the following set $$\Big{ 0\leq n<N;\ S_{\alpha_1}(n)\equiv a_1\pmod{b_1},\ S_{\alpha_2}(n)\equiv a_2\pmod{b_2}\Big},$$ for all integers $a_1$ and $a_2.$ Our result should be compared to that of B\'{e}sineau and Kim who treated the case of the $q-$representations in different bases (that are coprimes).

Summary

We haven't generated a summary for this paper yet.