Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decomposed Quadratization: Efficient QUBO Formulation for Learning Bayesian Network (2006.06926v5)

Published 12 Jun 2020 in cs.LG and stat.ML

Abstract: Algorithms and hardware for solving quadratic unconstrained binary optimization (QUBO) problems have made significant recent progress. This advancement has focused attention on formulating combinatorial optimization problems as quadratic polynomials. To improve the performance of solving large QUBO problems, it is essential to minimize the number of binary variables used in the objective function. In this paper, we propose a QUBO formulation that offers a bit capacity advantage over conventional quadratization techniques. As a key application, this formulation significantly reduces the number of binary variables required for score-based Bayesian network structure learning. Experimental results on $16$ instances, ranging from $37$ to $223$ variables, demonstrate that our approach requires fewer binary variables than quadratization by orders of magnitude. Moreover, an annealing machine that implement our formulation have outperformed existing algorithms in score maximization.

Summary

We haven't generated a summary for this paper yet.