Papers
Topics
Authors
Recent
2000 character limit reached

The planar limit of $\mathcal{N}=2$ superconformal quiver theories

Published 11 Jun 2020 in hep-th | (2006.06379v2)

Abstract: We compute the planar limit of both the free energy and the expectation value of the $1/2$ BPS Wilson loop for four dimensional ${\cal N}=2$ superconformal quiver theories, with a product of SU($N$)s as gauge group and bi-fundamental matter. Supersymmetric localization reduces the problem to a multi-matrix model, that we rewrite in the zero-instanton sector as an effective action involving an infinite number of double-trace terms, determined by the relevant extended Cartan matrix. We find that the results, as in the case of $\mathcal{N}=2$ SCFTs with a simple gauge group, can be written as sums over tree graphs. For the $\widehat{A_1}$ case, we find that the contribution of each tree can be interpreted as the partition function of a generalized Ising model defined on the tree; we conjecture that the partition functions of these models defined on trees satisfy the Lee-Yang property, i.e. all their zeros lie on the unit circle.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.