Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metabelian groups: full-rank presentations, randomness and Diophantine problems (2006.06371v1)

Published 11 Jun 2020 in math.GR

Abstract: We study metabelian groups $G$ given by full rank finite presentations $\langle A \mid R \rangle_{\mathcal{M}}$ in the variety $\mathcal{M}$ of metabelian groups. We prove that $G$ is a product of a free metabelian subgroup of rank $\max{0, |A|-|R|}$ and a virtually abelian normal subgroup, and that if $|R| \leq |A|-2$ then the Diophantine problem of $G$ is undecidable, while it is decidable if $|R|\geq |A|$. We further prove that if $|R| \leq |A|-1$ then in any direct decomposition of $G$ all, but one, factors are virtually abelian. Since finite presentations have full rank asymptotically almost surely, finitely presented metabelian groups satisfy all the aforementioned properties asymptotically almost surely.

Summary

We haven't generated a summary for this paper yet.