Metabelian groups: full-rank presentations, randomness and Diophantine problems
Abstract: We study metabelian groups $G$ given by full rank finite presentations $\langle A \mid R \rangle_{\mathcal{M}}$ in the variety $\mathcal{M}$ of metabelian groups. We prove that $G$ is a product of a free metabelian subgroup of rank $\max{0, |A|-|R|}$ and a virtually abelian normal subgroup, and that if $|R| \leq |A|-2$ then the Diophantine problem of $G$ is undecidable, while it is decidable if $|R|\geq |A|$. We further prove that if $|R| \leq |A|-1$ then in any direct decomposition of $G$ all, but one, factors are virtually abelian. Since finite presentations have full rank asymptotically almost surely, finitely presented metabelian groups satisfy all the aforementioned properties asymptotically almost surely.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.