Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The perturbation analysis of nonconvex low-rank matrix robust recovery (2006.06283v1)

Published 11 Jun 2020 in cs.IT and math.IT

Abstract: In this paper, we bring forward a completely perturbed nonconvex Schatten $p$-minimization to address a model of completely perturbed low-rank matrix recovery. The paper that based on the restricted isometry property generalizes the investigation to a complete perturbation model thinking over not only noise but also perturbation, gives the restricted isometry property condition that guarantees the recovery of low-rank matrix and the corresponding reconstruction error bound. In particular, the analysis of the result reveals that in the case that $p$ decreases $0$ and $a>1$ for the complete perturbation and low-rank matrix, the condition is the optimal sufficient condition $\delta_{2r}<1$ \cite{Recht et al 2010}. The numerical experiments are conducted to show better performance, and provides outperformance of the nonconvex Schatten $p$-minimization method comparing with the convex nuclear norm minimization approach in the completely perturbed scenario.

Citations (1)

Summary

We haven't generated a summary for this paper yet.