Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Tailored Convolutional Neural Network for Nonlinear Manifold Learning of Computational Physics Data using Unstructured Spatial Discretizations (2006.06154v3)

Published 11 Jun 2020 in physics.comp-ph, cs.CV, and cs.LG

Abstract: We propose a nonlinear manifold learning technique based on deep convolutional autoencoders that is appropriate for model order reduction of physical systems in complex geometries. Convolutional neural networks have proven to be highly advantageous for compressing data arising from systems demonstrating a slow-decaying Kolmogorov n-width. However, these networks are restricted to data on structured meshes. Unstructured meshes are often required for performing analyses of real systems with complex geometry. Our custom graph convolution operators based on the available differential operators for a given spatial discretization effectively extend the application space of deep convolutional autoencoders to systems with arbitrarily complex geometry that are typically discretized using unstructured meshes. We propose sets of convolution operators based on the spatial derivative operators for the underlying spatial discretization, making the method particularly well suited to data arising from the solution of partial differential equations. We demonstrate the method using examples from heat transfer and fluid mechanics and show better than an order of magnitude improvement in accuracy over linear methods.

Citations (13)

Summary

We haven't generated a summary for this paper yet.