Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When is Particle Filtering Efficient for Planning in Partially Observed Linear Dynamical Systems? (2006.05975v2)

Published 10 Jun 2020 in cs.LG, math.OC, and stat.ML

Abstract: Particle filtering is a popular method for inferring latent states in stochastic dynamical systems, whose theoretical properties have been well studied in machine learning and statistics communities. In many control problems, e.g., partially observed linear dynamical systems (POLDS), oftentimes the inferred latent state is further used for planning at each step. This paper initiates a rigorous study on the efficiency of particle filtering for sequential planning, and gives the first particle complexity bounds. Though errors in past actions may affect the future, we are able to bound the number of particles needed so that the long-run reward of the policy based on particle filtering is close to that based on exact inference. In particular, we show that, in stable systems, polynomially many particles suffice. Key in our proof is a coupling of the ideal sequence based on the exact planning and the sequence generated by approximate planning based on particle filtering. We believe this technique can be useful in other sequential decision-making problems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.