Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Bounds between $f$-Divergences and Integral Probability Metrics (2006.05973v3)

Published 10 Jun 2020 in math.ST, cs.IT, cs.LG, math.IT, math.OC, and stat.TH

Abstract: The families of $f$-divergences (e.g. the Kullback-Leibler divergence) and Integral Probability Metrics (e.g. total variation distance or maximum mean discrepancies) are widely used to quantify the similarity between probability distributions. In this work, we systematically study the relationship between these two families from the perspective of convex duality. Starting from a tight variational representation of the $f$-divergence, we derive a generalization of the moment-generating function, which we show exactly characterizes the best lower bound of the $f$-divergence as a function of a given IPM. Using this characterization, we obtain new bounds while also recovering in a unified manner well-known results, such as Hoeffding's lemma, Pinsker's inequality and its extension to subgaussian functions, and the Hammersley-Chapman-Robbins bound. This characterization also allows us to prove new results on topological properties of the divergence which may be of independent interest.

Citations (34)

Summary

We haven't generated a summary for this paper yet.