Papers
Topics
Authors
Recent
Search
2000 character limit reached

3D geometric moment invariants from the point of view of the classical invariant theory

Published 23 May 2020 in cs.CV and eess.IV | (2006.05674v1)

Abstract: The aim of this paper is to clear up the problem of the connection between the 3D geometric moments invariants and the invariant theory, considering a problem of describing of the 3D geometric moments invariants as a problem of the classical invariant theory. Using the remarkable fact that the groups $SO(3)$ and $SL(2)$ are locally isomorphic, we reduced the problem of deriving 3D geometric moments invariants to the well-known problem of the classical invariant theory. We give a precise statement of the 3D geometric invariant moments computation, introducing the notions of the algebras of simultaneous 3D geometric moment invariants, and prove that they are isomorphic to the algebras of joint $SL(2)$-invariants of several binary forms. To simplify the calculating of the invariants we proceed from an action of Lie group $SO(3)$ to an action of its Lie algebra $\mathfrak{sl}_2$. The author hopes that the results will be useful to the researchers in the fields of image analysis and pattern recognition.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.