Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sublinear Algorithms and Lower Bounds for Metric TSP Cost Estimation (2006.05490v1)

Published 9 Jun 2020 in cs.DS

Abstract: We consider the problem of designing sublinear time algorithms for estimating the cost of a minimum metric traveling salesman (TSP) tour. Specifically, given access to a $n \times n$ distance matrix $D$ that specifies pairwise distances between $n$ points, the goal is to estimate the TSP cost by performing only sublinear (in the size of $D$) queries. For the closely related problem of estimating the weight of a metric minimum spanning tree (MST), it is known that for any $\varepsilon > 0$, there exists an $\tilde{O}(n/\varepsilon{O(1)})$ time algorithm that returns a $(1 + \varepsilon)$-approximate estimate of the MST cost. This result immediately implies an $\tilde{O}(n/\varepsilon{O(1)})$ time algorithm to estimate the TSP cost to within a $(2 + \varepsilon)$ factor for any $\varepsilon > 0$. However, no $o(n2)$ time algorithms are known to approximate metric TSP to a factor that is strictly better than $2$. On the other hand, there were also no known barriers that rule out the existence of $(1 + \varepsilon)$-approximate estimation algorithms for metric TSP with $\tilde{O}(n)$ time for any fixed $\varepsilon > 0$. In this paper, we make progress on both algorithms and lower bounds for estimating metric TSP cost. We also show that the problem of estimating metric TSP cost is closely connected to the problem of estimating the size of a maximum matching in a graph.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yu Chen (506 papers)
  2. Sampath Kannan (23 papers)
  3. Sanjeev Khanna (67 papers)
Citations (15)