Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical Estimation of High-Dimensional Vector Autoregressive Models (2006.05345v1)

Published 9 Jun 2020 in stat.ML and cs.LG

Abstract: High-dimensional vector autoregressive (VAR) models are important tools for the analysis of multivariate time series. This paper focuses on high-dimensional time series and on the different regularized estimation procedures proposed for fitting sparse VAR models to such time series. Attention is paid to the different sparsity assumptions imposed on the VAR parameters and how these sparsity assumptions are related to the particular consistency properties of the estimators established. A sparsity scheme for high-dimensional VAR models is proposed which is found to be more appropriate for the time series setting considered. Furthermore, it is shown that, under this sparsity setting, threholding extents the consistency properties of regularized estimators to a wide range of matrix norms. Among other things, this enables application of the VAR parameters estimators to different inference problems, like forecasting or estimating the second-order characteristics of the underlying VAR process. Extensive simulations compare the finite sample behavior of the different regularized estimators proposed using a variety of performance criteria.

Citations (1)

Summary

We haven't generated a summary for this paper yet.