Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equivalence of Weighted DT-Moduli of (Co)convex Functions (2006.05258v1)

Published 7 Jun 2020 in math.FA

Abstract: The paper present new definitions for weighted DT moduli. Similarly, we a general outcome in an equivalence of moduli of smoothness are obtained. It is known that, any $r \in \mathbb{N}{\circ}$ , $0<p \leq \infty$, $1 \leq \eta \leq r$ and $\phi(x)=\sqrt{1-x2}$, the inequalities $\omega{\phi}{i+1,r} \; (f{(r)}, | \theta_{\mathcal{N}} |){w{\alpha, \beta}, p} \sim \omega{\phi}_{i,r+1} \; (f{(r+1)}, | \theta_{\mathcal{N}} |){w{\alpha, \beta}, p}$ and $\omega{\phi}_{i+\eta} \; (f, | \theta_{\mathcal{N}} |){\alpha, \beta, p} \sim | \theta{\mathcal{N}} |{- \eta} \omega{\phi}_{i, 2 \eta} \; (f{(2 \eta)}, | \theta_{\mathcal{N}} |)_{\alpha+ \eta, \beta+ \eta, p}$ are valid.

Summary

We haven't generated a summary for this paper yet.