Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning-to-Rank with Partitioned Preference: Fast Estimation for the Plackett-Luce Model (2006.05067v3)

Published 9 Jun 2020 in cs.LG and stat.ML

Abstract: We investigate the Plackett-Luce (PL) model based listwise learning-to-rank (LTR) on data with partitioned preference, where a set of items are sliced into ordered and disjoint partitions, but the ranking of items within a partition is unknown. Given $N$ items with $M$ partitions, calculating the likelihood of data with partitioned preference under the PL model has a time complexity of $O(N+S!)$, where $S$ is the maximum size of the top $M-1$ partitions. This computational challenge restrains most existing PL-based listwise LTR methods to a special case of partitioned preference, top-$K$ ranking, where the exact order of the top $K$ items is known. In this paper, we exploit a random utility model formulation of the PL model, and propose an efficient numerical integration approach for calculating the likelihood and its gradients with a time complexity $O(N+S3)$. We demonstrate that the proposed method outperforms well-known LTR baselines and remains scalable through both simulation experiments and applications to real-world eXtreme Multi-Label classification tasks.

Citations (12)

Summary

We haven't generated a summary for this paper yet.